Step
*
1
1
1
1
1
1
2
of Lemma
general-fan-theorem-troelstra
1. X : n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ@i'
2. F : ∀f:ℕ ⟶ 𝔹. ∃n:ℕ. (X n f)@i
3. M : n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)@i
4. G : ∀f:ℕ ⟶ 𝔹. ∃n:ℕ. (((M n f) = (inl (fst((F f)))) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ))))@i
5. f : ℕ ⟶ 𝔹@i
6. n : ℕ
7. ∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ))
8. n1 : ℕ@i
9. v1 : X n1 f@i
10. (F f) = <n1, v1> ∈ (∃n:ℕ. (X n f))
11. (M n f) = (inl n1) ∈ (ℕ?)
12. ↑isl(M n f)
⊢ ↑if (outl(M n f)) < (imax(n1;n) + 1) then tt else ff
BY
{ (HypSubst' (-2) 0 THEN Reduce 0 THEN AutoSplit) }
1
1. X : n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ ℙ@i'
2. F : ∀f:ℕ ⟶ 𝔹. ∃n:ℕ. (X n f)@i
3. M : n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)@i
4. G : ∀f:ℕ ⟶ 𝔹. ∃n:ℕ. (((M n f) = (inl (fst((F f)))) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ))))@i
5. f : ℕ ⟶ 𝔹@i
6. n : ℕ
7. ∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ))
8. n1 : ℕ@i
9. ¬n1 < imax(n1;n) + 1
10. v1 : X n1 f@i
11. (F f) = <n1, v1> ∈ (∃n:ℕ. (X n f))
12. (M n f) = (inl n1) ∈ (ℕ?)
13. ↑isl(M n f)
⊢ False
Latex:
Latex:
1. X : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbP{}@i'
2. F : \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}. \mexists{}n:\mBbbN{}. (X n f)@i
3. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} (\mBbbN{}?)@i
4. G : \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}. \mexists{}n:\mBbbN{}. (((M n f) = (inl (fst((F f))))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} (m = n))))@i
5. f : \mBbbN{} {}\mrightarrow{} \mBbbB{}@i
6. n : \mBbbN{}
7. \mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} (m = n))
8. n1 : \mBbbN{}@i
9. v1 : X n1 f@i
10. (F f) = <n1, v1>
11. (M n f) = (inl n1)
12. \muparrow{}isl(M n f)
\mvdash{} \muparrow{}if (outl(M n f)) < (imax(n1;n) + 1) then tt else ff
By
Latex:
(HypSubst' (-2) 0 THEN Reduce 0 THEN AutoSplit)
Home
Index