Nuprl Lemma : howard-bar-rec-equal-decidable
∀[M,mon,base,ind:Top]. ∀[n:ℕ]. ∀[s:Top].
  (howard-bar-rec(M;mon;base;ind;n;s) ~ decidable-bar-rec(M;λn,s,r. let k,p = r in base n s (mon n k s p);ind;n;s))
Proof
Definitions occuring in Statement : 
howard-bar-rec: howard-bar-rec(M;mon;base;ind;n;s)
, 
decidable-bar-rec: decidable-bar-rec(dec;base;ind;n;s)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
spread: spread def, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
howard-bar-rec: howard-bar-rec(M;mon;base;ind;n;s)
, 
decidable-bar-rec: decidable-bar-rec(dec;base;ind;n;s)
Lemmas referenced : 
top_wf, 
nat_wf
Rules used in proof : 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
sqequalAxiom, 
introduction, 
isect_memberFormation, 
because_Cache, 
hypothesis, 
lemma_by_obid, 
cut, 
sqequalRule, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[M,mon,base,ind:Top].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:Top].
    (howard-bar-rec(M;mon;base;ind;n;s)  \msim{}  decidable-bar-rec(M;\mlambda{}n,s,r.  let  k,p  =  r 
                                                                                                                                        in  base  n  s  (mon  n  k  s  p);ind;n;\000Cs))
Date html generated:
2016_05_19-PM-00_08_20
Last ObjectModification:
2016_05_18-PM-02_16_04
Theory : continuity
Home
Index