Nuprl Lemma : implies-prop-truncation

T:Type. (T  ⇃(T))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] all: x:A. B[x] implies:  Q true: True universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  subtype_quotient true_wf equiv_rel_true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesisEquality universeEquality rename introduction cut applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesis independent_isectElimination

Latex:
\mforall{}T:Type.  (T  {}\mRightarrow{}  \00D9(T))



Date html generated: 2016_05_14-PM-09_37_48
Last ObjectModification: 2015_12_26-PM-09_49_40

Theory : continuity


Home Index