Nuprl Lemma : implies-prop-truncation
∀T:Type. (T 
⇒ ⇃(T))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
subtype_quotient, 
true_wf, 
equiv_rel_true
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesisEquality, 
universeEquality, 
rename, 
introduction, 
cut, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_isectElimination
Latex:
\mforall{}T:Type.  (T  {}\mRightarrow{}  \00D9(T))
Date html generated:
2016_05_14-PM-09_37_48
Last ObjectModification:
2015_12_26-PM-09_49_40
Theory : continuity
Home
Index