Step
*
1
1
of Lemma
monotone-bar-induction1
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ (∀m:ℕ. B[n + 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ (↓Q[n;s]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. (↓Q[n + 1;s.m@n]))
⇒ (↓Q[n;s]))
6. ∀alpha:ℕ ⟶ ℕ. ∃m:ℕ. B[m;alpha]
7. F : alpha:(ℕ ⟶ ℕ) ⟶ ℕ
8. ∀alpha:ℕ ⟶ ℕ. B[F alpha;alpha]
9. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
10. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?))))))
11. n : ℕ
12. s : ℕn ⟶ ℕ
13. ↑isl(M n s)
14. i : ℕ
15. (M i (λb.if b <z n then s b else 0 fi )) = (inl (F (λb.if b <z n then s b else 0 fi ))) ∈ (ℕ?)
16. ∀m:ℕ
((↑isl(M m (λb.if b <z n then s b else 0 fi )))
⇒ ((M m (λb.if b <z n then s b else 0 fi )) = (inl (F (λb.if b <z n then s b else 0 fi ))) ∈ (ℕ?)))
⊢ ↓Q[n;s]
BY
{ TACTIC:(InstHyp [⌜n⌝] (-1)⋅ THENA (Auto THEN NthHypEq(-4) THEN RepeatFor 3 ((EqCD THEN Auto)))) }
1
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ (∀m:ℕ. B[n + 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ (↓Q[n;s]))
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. (↓Q[n + 1;s.m@n]))
⇒ (↓Q[n;s]))
6. ∀alpha:ℕ ⟶ ℕ. ∃m:ℕ. B[m;alpha]
7. F : alpha:(ℕ ⟶ ℕ) ⟶ ℕ
8. ∀alpha:ℕ ⟶ ℕ. B[F alpha;alpha]
9. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
10. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?))))))
11. n : ℕ
12. s : ℕn ⟶ ℕ
13. ↑isl(M n s)
14. i : ℕ
15. (M i (λb.if b <z n then s b else 0 fi )) = (inl (F (λb.if b <z n then s b else 0 fi ))) ∈ (ℕ?)
16. ∀m:ℕ
((↑isl(M m (λb.if b <z n then s b else 0 fi )))
⇒ ((M m (λb.if b <z n then s b else 0 fi )) = (inl (F (λb.if b <z n then s b else 0 fi ))) ∈ (ℕ?)))
17. (M n (λb.if b <z n then s b else 0 fi )) = (inl (F (λb.if b <z n then s b else 0 fi ))) ∈ (ℕ?)
⊢ ↓Q[n;s]
Latex:
Latex:
1. B : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
2. Q : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
3. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. (B[n;s] {}\mRightarrow{} (\mforall{}m:\mBbbN{}. B[n + 1;s.m@n]))
4. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. (B[n;s] {}\mRightarrow{} (\mdownarrow{}Q[n;s]))
5. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. ((\mforall{}m:\mBbbN{}. (\mdownarrow{}Q[n + 1;s.m@n])) {}\mRightarrow{} (\mdownarrow{}Q[n;s]))
6. \mforall{}alpha:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \mexists{}m:\mBbbN{}. B[m;alpha]
7. F : alpha:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}
8. \mforall{}alpha:\mBbbN{} {}\mrightarrow{} \mBbbN{}. B[F alpha;alpha]
9. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}n?)
10. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
(\mdownarrow{}\mexists{}n:\mBbbN{}. (((M n f) = (inl (F f))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} ((M m f) = (inl (F f)))))))
11. n : \mBbbN{}
12. s : \mBbbN{}n {}\mrightarrow{} \mBbbN{}
13. \muparrow{}isl(M n s)
14. i : \mBbbN{}
15. (M i (\mlambda{}b.if b <z n then s b else 0 fi )) = (inl (F (\mlambda{}b.if b <z n then s b else 0 fi )))
16. \mforall{}m:\mBbbN{}
((\muparrow{}isl(M m (\mlambda{}b.if b <z n then s b else 0 fi )))
{}\mRightarrow{} ((M m (\mlambda{}b.if b <z n then s b else 0 fi )) = (inl (F (\mlambda{}b.if b <z n then s b else 0 fi )))))
\mvdash{} \mdownarrow{}Q[n;s]
By
Latex:
TACTIC:(InstHyp [\mkleeneopen{}n\mkleeneclose{}] (-1)\mcdot{} THENA (Auto THEN NthHypEq(-4) THEN RepeatFor 3 ((EqCD THEN Auto))))
Home
Index