Nuprl Lemma : monotone-bar-induction1
∀[B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ].
  ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ (∀m:ℕ. B[n + 1;s.m@n])))
  
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ (↓Q[n;s])))
  
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. (↓Q[n + 1;s.m@n])) 
⇒ (↓Q[n;s])))
  
⇒ (∀alpha:ℕ ⟶ ℕ. ∃m:ℕ. B[m;alpha])
  
⇒ (↓Q[0;λx.⊥]))
Proof
Definitions occuring in Statement : 
seq-add: s.x@n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
pi1: fst(t)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
cand: A c∧ B
, 
outl: outl(x)
, 
sq_stable: SqStable(P)
, 
less_than: a < b
, 
subtract: n - m
, 
seq-add: s.x@n
, 
nequal: a ≠ b ∈ T 
, 
seq-adjoin: s++t
, 
seq-append: seq-append(n;m;s1;s2)
, 
isl: isl(x)
Lemmas referenced : 
strong-continuity-implies3, 
basic_bar_induction, 
assert_wf, 
isl_wf, 
int_seg_wf, 
unit_wf2, 
nat_wf, 
squash_wf, 
decidable__assert, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
seq-adjoin_wf, 
subtype_rel_function, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
seq-add_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
less_than_wf, 
eqff_to_assert, 
int_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
true_wf, 
set_subtype_base, 
lelt_wf, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
equal_wf, 
iff_imp_equal_bool, 
btrue_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
decidable__lt, 
equal-wf-base-T, 
int_seg_subtype, 
sq_stable__le, 
le_weakening2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
primrec-wf2, 
add-zero, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add-associates, 
add_functionality_wrt_le, 
le-add-cancel2, 
add-member-int_seg2, 
subtract-add-cancel, 
eq_int_wf, 
assert_of_eq_int, 
decidable__equal_nat, 
neg_assert_of_eq_int, 
add-mul-special, 
zero-mul, 
zero-add, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
hypothesis, 
promote_hyp, 
thin, 
sqequalHypSubstitution, 
productElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
imageElimination, 
because_Cache, 
sqequalRule, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
independent_functionElimination, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :productIsType, 
instantiate, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
functionEquality, 
Error :equalityIsType1, 
equalityElimination, 
Error :equalityIsType2, 
baseApply, 
closedConclusion, 
cumulativity, 
hyp_replacement, 
Error :unionIsType, 
Error :functionExtensionality_alt, 
intEquality, 
unionEquality, 
applyLambdaEquality, 
Error :equalityIsType4, 
Error :inrEquality_alt, 
Error :setIsType, 
minusEquality, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq, 
lessCases, 
axiomSqEquality
Latex:
\mforall{}[B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  B[n  +  1;s.m@n])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mdownarrow{}Q[n;s])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  (\mdownarrow{}Q[n  +  1;s.m@n]))  {}\mRightarrow{}  (\mdownarrow{}Q[n;s])))
    {}\mRightarrow{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mexists{}m:\mBbbN{}.  B[m;alpha])
    {}\mRightarrow{}  (\mdownarrow{}Q[0;\mlambda{}x.\mbot{}]))
Date html generated:
2019_06_20-PM-02_54_11
Last ObjectModification:
2018_10_04-PM-11_40_07
Theory : continuity
Home
Index