Nuprl Lemma : strong-continuity-implies3

[F:(ℕ ⟶ ℕ) ⟶ ℕ]
  (↓∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
     ∀f:ℕ ⟶ ℕ(↓∃n:ℕ(((M f) (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl (F f)) ∈ (ℕ?)))))))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: assert: b isl: isl(x) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] so_apply: x[s] isl: isl(x) outl: outl(x) guard: {T} sq_stable: SqStable(P) implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B uimplies: supposing a subtype_rel: A ⊆B lelt: i ≤ j < k int_seg: {i..j-} and: P ∧ Q prop: so_lambda: λ2x.t[x] nat: all: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q pi1: fst(t) assert: b ifthenelse: if then else fi  btrue: tt satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top bfalse: ff uiff: uiff(P;Q) less_than: a < b sq_type: SQType(T) true: True iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B
Lemmas referenced :  strong-continuity-implies2 istype-nat decidable__lt decidable__assert decidable__and2 btrue_neq_bfalse equal_wf and_wf bfalse_wf assert_elim less_than_wf subtype_rel_self le_weakening2 sq_stable__le false_wf int_seg_subtype int_seg_wf subtype_rel_function le_wf unit_wf2 nat_wf isl_wf assert_wf decidable__exists_int_seg nat_properties int_seg_subtype_nat istype-false int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf true_wf it_wf imax_wf add_nat_wf imax_nat istype-le add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma union_subtype_base set_subtype_base int_subtype_base unit_subtype_base istype-assert decidable_wf btrue_wf pi1_wf subtype_base_sq squash_wf istype-universe iff_weakening_equal bool_wf bool_subtype_base imax_ub intformless_wf int_formula_prop_less_lemma exists_wf all_wf subtype_rel_union
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination sqequalRule imageMemberEquality baseClosed hypothesis functionIsType inhabitedIsType functionEquality isect_memberEquality voidElimination applyLambdaEquality equalityTransitivity equalitySymmetry unionElimination unionEquality independent_functionElimination independent_pairFormation independent_isectElimination because_Cache dependent_set_memberEquality applyEquality productEquality lambdaEquality rename setElimination natural_numberEquality dependent_functionElimination instantiate lambdaFormation dependent_pairFormation_alt lambdaEquality_alt universeIsType functionExtensionality dependent_set_memberEquality_alt lambdaFormation_alt equalityIsType1 inlEquality_alt approximateComputation int_eqEquality isect_memberEquality_alt productIsType inrEquality_alt addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion equalityIstype intEquality sqequalBase dependent_pairEquality_alt cumulativity universeEquality inlFormation_alt inrFormation_alt

Latex:
\mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}]
    (\mdownarrow{}\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              (\mdownarrow{}\mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  (F  f))))))))



Date html generated: 2020_05_19-PM-10_04_43
Last ObjectModification: 2019_12_17-PM-06_03_12

Theory : continuity


Home Index