Nuprl Lemma : strong-continuity-implies3
∀[F:(ℕ ⟶ ℕ) ⟶ ℕ]
  (↓∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
     ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?)))))))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
isl: isl(x)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inl: inl x
, 
union: left + right
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
isl: isl(x)
, 
outl: outl(x)
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
pi1: fst(t)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
sq_type: SQType(T)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
Lemmas referenced : 
strong-continuity-implies2, 
istype-nat, 
decidable__lt, 
decidable__assert, 
decidable__and2, 
btrue_neq_bfalse, 
equal_wf, 
and_wf, 
bfalse_wf, 
assert_elim, 
less_than_wf, 
subtype_rel_self, 
le_weakening2, 
sq_stable__le, 
false_wf, 
int_seg_subtype, 
int_seg_wf, 
subtype_rel_function, 
le_wf, 
unit_wf2, 
nat_wf, 
isl_wf, 
assert_wf, 
decidable__exists_int_seg, 
nat_properties, 
int_seg_subtype_nat, 
istype-false, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
true_wf, 
it_wf, 
imax_wf, 
add_nat_wf, 
imax_nat, 
istype-le, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
union_subtype_base, 
set_subtype_base, 
int_subtype_base, 
unit_subtype_base, 
istype-assert, 
decidable_wf, 
btrue_wf, 
pi1_wf, 
subtype_base_sq, 
squash_wf, 
istype-universe, 
iff_weakening_equal, 
bool_wf, 
bool_subtype_base, 
imax_ub, 
intformless_wf, 
int_formula_prop_less_lemma, 
exists_wf, 
all_wf, 
subtype_rel_union
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
hypothesis, 
functionIsType, 
inhabitedIsType, 
functionEquality, 
isect_memberEquality, 
voidElimination, 
applyLambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
unionEquality, 
independent_functionElimination, 
independent_pairFormation, 
independent_isectElimination, 
because_Cache, 
dependent_set_memberEquality, 
applyEquality, 
productEquality, 
lambdaEquality, 
rename, 
setElimination, 
natural_numberEquality, 
dependent_functionElimination, 
instantiate, 
lambdaFormation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
universeIsType, 
functionExtensionality, 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
equalityIsType1, 
inlEquality_alt, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
productIsType, 
inrEquality_alt, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
equalityIstype, 
intEquality, 
sqequalBase, 
dependent_pairEquality_alt, 
cumulativity, 
universeEquality, 
inlFormation_alt, 
inrFormation_alt
Latex:
\mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}]
    (\mdownarrow{}\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              (\mdownarrow{}\mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  (F  f))))))))
Date html generated:
2020_05_19-PM-10_04_43
Last ObjectModification:
2019_12_17-PM-06_03_12
Theory : continuity
Home
Index