Nuprl Lemma : strong-continuity-implies2

[F:(ℕ ⟶ ℕ) ⟶ ℕ]
  (↓∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
     ∀f:ℕ ⟶ ℕ(↓∃n:ℕ(((M f) (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  (m n ∈ ℕ))))))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: assert: b isl: isl(x) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] nat: prop: so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q cand: c∧ B true: True guard: {T} uiff: uiff(P;Q) top: Top assert: b ifthenelse: if then else fi  bfalse: ff ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) isl: isl(x) sq_type: SQType(T) btrue: tt iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_wf strong-continuity-implies1 strong-continuity-test_wf int_seg_wf all_wf squash_wf exists_wf equal_wf unit_wf2 subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self assert_wf isl_wf decidable__assert strong-continuity-test-prop1 decidable__lt assert_functionality_wrt_uiff true_wf isr-not-isl subtype_rel_union top_wf decidable__equal_int nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma le_wf intformless_wf int_formula_prop_less_lemma not-isl-assert-isr strong-continuity-test-prop2 and_wf btrue_wf subtype_base_sq bool_wf bool_subtype_base iff_weakening_equal strong-continuity-test-prop3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed functionEquality extract_by_obid isectElimination productElimination dependent_pairFormation lambdaEquality functionExtensionality applyEquality natural_numberEquality setElimination rename because_Cache productEquality unionEquality independent_isectElimination independent_pairFormation lambdaFormation inlEquality dependent_functionElimination equalityTransitivity equalitySymmetry unionElimination independent_functionElimination cumulativity universeEquality isect_memberEquality voidElimination voidEquality int_eqEquality intEquality computeAll dependent_set_memberEquality applyLambdaEquality instantiate

Latex:
\mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}]
    (\mdownarrow{}\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n))))))



Date html generated: 2017_04_17-AM-09_54_20
Last ObjectModification: 2017_02_27-PM-05_49_14

Theory : continuity


Home Index