Step
*
1
1
of Lemma
monotone-bar-induction3-2
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ (∀m:ℕ. B[n + 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ Q[n;s])
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. Q[n + 1;s.m@n]) 
⇒ Q[n;s])
6. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕ. B[m;alpha])
7. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
8. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn. (((λf,n. (B n f)) f k) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl k) ∈ (ℕ?))))\000C)
9. n : ℕ
10. s : ℕn ⟶ ℕ
11. ↑isl(M n s)
⊢ Q[n;s]
BY
{ ((InstHyp [⌜ext2Baire(n;s;0)⌝] (-4)⋅ THENA Auto) THEN ExRepD THEN RenameVar `i' (-4)) }
1
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ (∀m:ℕ. B[n + 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ Q[n;s])
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. Q[n + 1;s.m@n]) 
⇒ Q[n;s])
6. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕ. B[m;alpha])
7. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
8. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn. (((λf,n. (B n f)) f k) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl k) ∈ (ℕ?))))\000C)
9. n : ℕ
10. s : ℕn ⟶ ℕ
11. ↑isl(M n s)
12. n@0 : ℕ
13. i : ℕn@0
14. (λf,n. (B n f)) ext2Baire(n;s;0) i
15. (M n@0 ext2Baire(n;s;0)) = (inl i) ∈ (ℕ?)
16. ∀m:ℕ. ((↑isl(M m ext2Baire(n;s;0))) 
⇒ ((M m ext2Baire(n;s;0)) = (inl i) ∈ (ℕ?)))
⊢ Q[n;s]
Latex:
Latex:
1.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
2.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  B[n  +  1;s.m@n]))
4.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s])
5.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s])
6.  bar  :  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}m:\mBbbN{}.  B[m;alpha])
7.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
8.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
          \mexists{}n:\mBbbN{}
            \mexists{}k:\mBbbN{}n
              (((\mlambda{}f,n.  (B  n  f))  f  k)  \mwedge{}  ((M  n  f)  =  (inl  k))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k))))\000C)
9.  n  :  \mBbbN{}
10.  s  :  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}
11.  \muparrow{}isl(M  n  s)
\mvdash{}  Q[n;s]
By
Latex:
((InstHyp  [\mkleeneopen{}ext2Baire(n;s;0)\mkleeneclose{}]  (-4)\mcdot{}  THENA  Auto)  THEN  ExRepD  THEN  RenameVar  `i'  (-4))
Home
Index