Step * 1 1 1 2 1 1 2 of Lemma monotone-bar-induction5


1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃n:ℕ(B[n;alpha] ∧ (∀m:{n...}. (B[m;alpha]  B[m 1;alpha]))))
6. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
7. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       (((B f) ∧ (∀m:{k...}. (B[m;f]  B[m 1;f])))
       ∧ ((M f) (inl k) ∈ (ℕ?))
       ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?)))))
8. : ℕ
9. : ℕn ⟶ ℕ
10. ∀t:ℕ. ⇃(Q[n 1;s++t])
11. : ℕ
12. ⇃(Q[n 1;s++m])
13. Q[n 1;s++m]  Q[n 1;s.m@n]
⊢ ⇃(Q[n 1;s.m@n])
BY
TACTIC:(RenameVar `f' (-1) THEN RenameVar `x' (-2) THEN UseWitness ⌜x⌝⋅ THEN newQuotientElim1 (-2)⋅ THEN Auto) }


Latex:


Latex:

1.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
2.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s]))
4.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s]))
5.  bar  :  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  (B[n;alpha]  \mwedge{}  (\mforall{}m:\{n...\}.  (B[m;alpha]  {}\mRightarrow{}  B[m  +  1;alpha]))))
6.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
7.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
          \mexists{}n:\mBbbN{}
            \mexists{}k:\mBbbN{}n
              (((B  k  f)  \mwedge{}  (\mforall{}m:\{k...\}.  (B[m;f]  {}\mRightarrow{}  B[m  +  1;f])))
              \mwedge{}  ((M  n  f)  =  (inl  k))
              \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k)))))
8.  n  :  \mBbbN{}
9.  s  :  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}
10.  \mforall{}t:\mBbbN{}.  \00D9(Q[n  +  1;s++t])
11.  m  :  \mBbbN{}
12.  \00D9(Q[n  +  1;s++m])
13.  Q[n  +  1;s++m]  {}\mRightarrow{}  Q[n  +  1;s.m@n]
\mvdash{}  \00D9(Q[n  +  1;s.m@n])


By


Latex:
TACTIC:(RenameVar  `f'  (-1)
                THEN  RenameVar  `x'  (-2)
                THEN  UseWitness  \mkleeneopen{}f  x\mkleeneclose{}\mcdot{}
                THEN  newQuotientElim1  (-2)\mcdot{}
                THEN  Auto)




Home Index