Nuprl Lemma : quot-implies-squash
∀P:ℙ. (⇃(P) 
⇒ (↓P))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
true: True
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
true: True
, 
cand: A c∧ B
, 
squash: ↓T
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
istype-universe, 
true_wf, 
squash_wf, 
member_wf, 
quotient_wf, 
equiv_rel_true
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
promote_hyp, 
Error :universeIsType, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
independent_functionElimination, 
Error :productIsType, 
Error :equalityIsType4, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
Error :lambdaEquality_alt, 
Error :inhabitedIsType, 
independent_isectElimination, 
universeEquality
Latex:
\mforall{}P:\mBbbP{}.  (\00D9(P)  {}\mRightarrow{}  (\mdownarrow{}P))
Date html generated:
2019_06_20-PM-02_54_36
Last ObjectModification:
2018_10_05-PM-10_38_33
Theory : continuity
Home
Index