Nuprl Lemma : quot-implies-squash

P:ℙ(⇃(P)  (↓P))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] prop: all: x:A. B[x] squash: T implies:  Q true: True
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: true: True cand: c∧ B squash: T quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  istype-universe true_wf squash_wf member_wf quotient_wf equiv_rel_true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis promote_hyp Error :universeIsType,  natural_numberEquality independent_pairFormation sqequalRule imageMemberEquality baseClosed dependent_functionElimination pointwiseFunctionality pertypeElimination productElimination independent_functionElimination Error :productIsType,  Error :equalityIsType4,  equalityTransitivity equalitySymmetry imageElimination Error :lambdaEquality_alt,  Error :inhabitedIsType,  independent_isectElimination universeEquality

Latex:
\mforall{}P:\mBbbP{}.  (\00D9(P)  {}\mRightarrow{}  (\mdownarrow{}P))



Date html generated: 2019_06_20-PM-02_54_36
Last ObjectModification: 2018_10_05-PM-10_38_33

Theory : continuity


Home Index