Step
*
1
2
1
1
1
1
of Lemma
strong-continuity-implies3
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
3. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ)))))
4. d : ∀n:ℕ. ∀s:ℕn ⟶ ℕ. Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
5. n : ℤ
6. n ≥ 0
7. s : ℕn ⟶ ℕ
⊢ case d n s of inl(t) => M (fst(t)) s | inr(x) => inr ⋅ ∈ ℕn?
BY
{ ((GenConclTerm ⌜d n s⌝⋅ THENA Auto) THEN Thin (-1) THEN D -1 THEN Reduce 0) }
1
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
3. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ)))))
4. d : ∀n:ℕ. ∀s:ℕn ⟶ ℕ. Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
5. n : ℤ
6. n ≥ 0
7. s : ℕn ⟶ ℕ
8. x : ∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n)
⊢ M (fst(x)) s ∈ ℕn?
2
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
3. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ)))))
4. d : ∀n:ℕ. ∀s:ℕn ⟶ ℕ. Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
5. n : ℤ
6. n ≥ 0
7. s : ℕn ⟶ ℕ
8. y : ¬(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
⊢ inr ⋅ ∈ ℕn?
Latex:
Latex:
1. F : (\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}
2. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}?)
3. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. (\mdownarrow{}\mexists{}n:\mBbbN{}. (((M n f) = (inl (F f))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} (m = n)))))
4. d : \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. Dec(\mexists{}i:\mBbbN{}n. ((\muparrow{}isl(M i s)) \mwedge{} outl(M i s) < n))
5. n : \mBbbZ{}
6. n \mgeq{} 0
7. s : \mBbbN{}n {}\mrightarrow{} \mBbbN{}
\mvdash{} case d n s of inl(t) => M (fst(t)) s | inr(x) => inr \mcdot{} \mmember{} \mBbbN{}n?
By
Latex:
((GenConclTerm \mkleeneopen{}d n s\mkleeneclose{}\mcdot{} THENA Auto) THEN Thin (-1) THEN D -1 THEN Reduce 0)
Home
Index