Step
*
1
2
1
3
of Lemma
strong-continuity-implies3
.....wf.....
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
3. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ)))))
4. d : ∀n:ℕ. ∀s:ℕn ⟶ ℕ. Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
5. M1 : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
⊢ istype(∀f:ℕ ⟶ ℕ
(↓∃n:ℕ. (((M1 n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M1 m f))
⇒ ((M1 m f) = (inl (F f)) ∈ (ℕ?)))))))
BY
{ TACTIC:Auto }
Latex:
Latex:
.....wf.....
1. F : (\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}
2. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}?)
3. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. (\mdownarrow{}\mexists{}n:\mBbbN{}. (((M n f) = (inl (F f))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} (m = n)))))
4. d : \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. Dec(\mexists{}i:\mBbbN{}n. ((\muparrow{}isl(M i s)) \mwedge{} outl(M i s) < n))
5. M1 : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}n?)
\mvdash{} istype(\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
(\mdownarrow{}\mexists{}n:\mBbbN{}
(((M1 n f) = (inl (F f))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M1 m f)) {}\mRightarrow{} ((M1 m f) = (inl (F f))))))))
By
Latex:
TACTIC:Auto
Home
Index