Step
*
1
of Lemma
strong-continuity-rel-unique
1. P : (ℕ ⟶ ℕ) ⟶ ℕ ⟶ ℙ
2. F : (ℕ ⟶ ℕ) ⟶ ℕ
3. ∀f:ℕ ⟶ ℕ. (P f (F f))
⊢ ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
     ∀f:ℕ ⟶ ℕ. ∃n:ℕ. ∃k:ℕn. ((P f k) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ (m = n ∈ ℕ)))))
BY
{ ((InstLemma `strong-continuity2-no-inner-squash-unique-bound` [⌜F⌝]⋅ THENA Auto)
   THEN MoveToConcl (-1)
   THEN (BLemma `implies-quotient-true` THENA Auto)
   THEN (D 0 THENA Auto)
   THEN ExRepD) }
1
1. P : (ℕ ⟶ ℕ) ⟶ ℕ ⟶ ℙ
2. F : (ℕ ⟶ ℕ) ⟶ ℕ
3. ∀f:ℕ ⟶ ℕ. (P f (F f))
4. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
5. ∀f:ℕ ⟶ ℕ. ∃n:ℕ. (F f < n ∧ ((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ (m = n ∈ ℕ))))
⊢ ∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
   ∀f:ℕ ⟶ ℕ. ∃n:ℕ. ∃k:ℕn. ((P f k) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ (m = n ∈ ℕ))))
Latex:
Latex:
1.  P  :  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}
2.  F  :  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
3.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (P  f  (F  f))
\mvdash{}  \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mexists{}n:\mBbbN{}.  \mexists{}k:\mBbbN{}n.  ((P  f  k)  \mwedge{}  ((M  n  f)  =  (inl  k))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n)))))
By
Latex:
((InstLemma  `strong-continuity2-no-inner-squash-unique-bound`  [\mkleeneopen{}F\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  MoveToConcl  (-1)
  THEN  (BLemma  `implies-quotient-true`  THENA  Auto)
  THEN  (D  0  THENA  Auto)
  THEN  ExRepD)
Home
Index