Step
*
1
1
1
1
1
1
1
of Lemma
strong-continuity-rel
1. P : (ℕ ⟶ ℕ) ⟶ ℕ ⟶ ℙ
2. F : (ℕ ⟶ ℕ) ⟶ ℕ
3. ∀f:ℕ ⟶ ℕ. (P f (F f))
4. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
5. f : ℕ ⟶ ℕ
6. n : ℕ
7. F f < n
8. (M n f) = (inl (F f)) ∈ (ℕ?)
9. ∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?)))
⊢ ∃n:ℕ. ∃k:ℕn. ((P f k) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
BY
{ (InstConcl [⌜n⌝;⌜F f⌝]⋅ THEN Auto) }
Latex:
Latex:
1.  P  :  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}
2.  F  :  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
3.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (P  f  (F  f))
4.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
5.  f  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}
6.  n  :  \mBbbN{}
7.  F  f  <  n
8.  (M  n  f)  =  (inl  (F  f))
9.  \mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  (F  f))))
\mvdash{}  \mexists{}n:\mBbbN{}.  \mexists{}k:\mBbbN{}n.  ((P  f  k)  \mwedge{}  ((M  n  f)  =  (inl  k))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k)))))
By
Latex:
(InstConcl  [\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}F  f\mkleeneclose{}]\mcdot{}  THEN  Auto)
Home
Index