Step
*
of Lemma
strong-continuity2-implies-uniform-continuity
∀F:(ℕ ⟶ 𝔹) ⟶ 𝔹. ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f = g ∈ (ℕn ⟶ 𝔹)) 
⇒ F f = F g))
BY
{ ((UnivCD THENA Auto) THEN BLemma `uniform-continuity-from-fan-ext` THEN Auto) }
1
1. F : (ℕ ⟶ 𝔹) ⟶ 𝔹
⊢ ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (𝔹?) [(∀f:ℕ ⟶ 𝔹
                                    ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (𝔹?)))
                                    ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (𝔹?) supposing ↑isl(M n f))))])
Latex:
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbB{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  F  f  =  F  g))
By
Latex:
((UnivCD  THENA  Auto)  THEN  BLemma  `uniform-continuity-from-fan-ext`  THEN  Auto)
Home
Index