Nuprl Lemma : strong-continuity2-implies-uniform-continuity

F:(ℕ ⟶ 𝔹) ⟶ 𝔹. ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕn ⟶ 𝔹))  g))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: exists: x:A. B[x] nat: and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A isl: isl(x) so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} sq_exists: x:A [B[x]]
Lemmas referenced :  uniform-continuity-from-fan-ext bool_wf istype-nat strong-continuity2-no-inner-squash-cantor4 implies-quotient-true2 nat_wf int_seg_wf unit_wf2 equal_wf subtype_rel_function int_seg_subtype_nat istype-false subtype_rel_self assert_wf btrue_wf bfalse_wf sq_exists_wf trivial-quotient-true istype-assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination Error :functionIsType,  Error :universeIsType,  sqequalRule productEquality functionEquality natural_numberEquality setElimination rename unionEquality applyEquality because_Cache independent_isectElimination independent_pairFormation Error :inlEquality_alt,  isectEquality Error :inhabitedIsType,  unionElimination Error :equalityIstype,  equalityTransitivity equalitySymmetry Error :lambdaEquality_alt,  Error :unionIsType,  Error :productIsType,  Error :isectIsType,  productElimination Error :dependent_set_memberEquality_alt

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbB{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  F  f  =  F  g))



Date html generated: 2019_06_20-PM-02_52_43
Last ObjectModification: 2019_01_26-PM-06_15_00

Theory : continuity


Home Index