Nuprl Lemma : uniform-continuity-from-fan-ext

[T:Type]
  ∀F:(ℕ ⟶ 𝔹) ⟶ T
    (⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (T?) [(∀f:ℕ ⟶ 𝔹
                                       ((∃n:ℕ((M f) (inl (F f)) ∈ (T?)))
                                       ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (T?) supposing ↑isl(M f))))])
     ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕn ⟶ 𝔹))  ((F f) (F g) ∈ T))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T isl: isl(x) btrue: tt it: bfalse: ff subtract: m ifthenelse: if then else fi  ucont: ucont(F;M) uniform-continuity-from-fan implies-quotient-true2 trivial-quotient-true fan_theorem-ext decidable__assert implies-quotient-true uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  uniform-continuity-from-fan lifting-strict-callbyvalue istype-void strict4-spread lifting-strict-decide strict4-decide implies-quotient-true2 trivial-quotient-true fan_theorem-ext decidable__assert implies-quotient-true
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}[T:Type]
    \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T
        (\00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (T?)  [(\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
                                                                              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))
                                                                              \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))])
        {}\mRightarrow{}  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))))



Date html generated: 2019_06_20-PM-02_52_36
Last ObjectModification: 2019_03_12-PM-06_00_00

Theory : continuity


Home Index