Nuprl Lemma : uniform-continuity-from-fan

[T:Type]
  ∀F:(ℕ ⟶ 𝔹) ⟶ T
    (⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (T?) [(∀f:ℕ ⟶ 𝔹
                                       ((∃n:ℕ((M f) (inl (F f)) ∈ (T?)))
                                       ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (T?) supposing ↑isl(M f))))])
     ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕn ⟶ 𝔹))  ((F f) (F g) ∈ T))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T nat: so_lambda: λ2x.t[x] prop: and: P ∧ Q exists: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a isl: isl(x) so_apply: x[s] sq_exists: x:A [B[x]] so_apply: x[s1;s2] squash: T guard: {T} so_lambda: λ2y.t[x; y] true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) assert: b ifthenelse: if then else fi  btrue: tt le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q subtract: m sq_stable: SqStable(P) sq_type: SQType(T) outl: outl(x)
Lemmas referenced :  implies-quotient-true2 sq_exists_wf nat_wf int_seg_wf bool_wf unit_wf2 equal_wf assert_wf istype-nat trivial-quotient-true fan_theorem-ext btrue_wf bfalse_wf istype-assert quotient_wf true_wf equiv_rel_true istype-universe assert_functionality_wrt_uiff isl_wf istype-void squash_wf subtype_rel_function int_seg_subtype_nat istype-false subtype_rel_self decidable__assert int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma istype-le int_seg_subtype not-le-2 condition-implies-le minus-one-mul add-commutes minus-one-mul-top minus-add minus-minus add-associates add-swap zero-add sq_stable__le less-iff-le add_functionality_wrt_le le-add-cancel iff_weakening_equal outl_wf subtype_base_sq bool_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination functionEquality hypothesis natural_numberEquality setElimination rename because_Cache unionEquality hypothesisEquality sqequalRule Error :lambdaEquality_alt,  productEquality applyEquality Error :inlEquality_alt,  Error :universeIsType,  isectEquality Error :inhabitedIsType,  unionElimination Error :equalityIstype,  equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination Error :functionIsType,  Error :unionIsType,  independent_isectElimination imageElimination imageMemberEquality baseClosed Error :setIsType,  Error :productIsType,  Error :isectIsType,  instantiate universeEquality productElimination Error :dependent_pairFormation_alt,  voidEquality independent_pairFormation approximateComputation int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :dependent_set_memberEquality_alt,  addEquality minusEquality applyLambdaEquality cumulativity

Latex:
\mforall{}[T:Type]
    \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T
        (\00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (T?)  [(\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
                                                                              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))
                                                                              \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))])
        {}\mRightarrow{}  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))))



Date html generated: 2019_06_20-PM-02_52_23
Last ObjectModification: 2019_01_27-PM-01_57_32

Theory : continuity


Home Index