Step
*
1
1
1
1
1
of Lemma
strong-continuity3-implies-4
1. T : Type
2. F : (ℕ ⟶ T) ⟶ ℕ
3. M : n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)
4. ∀f:ℕ ⟶ T. ∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ))))
5. d : ∀n:ℕ. ∀s:ℕn ⟶ T. Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
6. n : ℤ
7. n ≥ 0
8. s : ℕn ⟶ T
9. i : ℕn
10. x1 : (↑isl(M i s)) ∧ outl(M i s) < n
11. (d n s) = (inl <i, x1>) ∈ (∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n) + (¬(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))))
⊢ M i s ∈ ℕn?
BY
{ (Thin (-1)
THEN RenameVar `%%' (-1)
THEN MoveToConcl (-1)
THEN (GenConclTerm ⌜M i s⌝⋅ THENA Auto)
THEN D -2
THEN Reduce 0
THEN Auto) }
Latex:
Latex:
1. T : Type
2. F : (\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} \mBbbN{}
3. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} (\mBbbN{}?)
4. \mforall{}f:\mBbbN{} {}\mrightarrow{} T. \mexists{}n:\mBbbN{}. (((M n f) = (inl (F f))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} (m = n))))
5. d : \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} T. Dec(\mexists{}i:\mBbbN{}n. ((\muparrow{}isl(M i s)) \mwedge{} outl(M i s) < n))
6. n : \mBbbZ{}
7. n \mgeq{} 0
8. s : \mBbbN{}n {}\mrightarrow{} T
9. i : \mBbbN{}n
10. x1 : (\muparrow{}isl(M i s)) \mwedge{} outl(M i s) < n
11. (d n s) = (inl <i, x1>)
\mvdash{} M i s \mmember{} \mBbbN{}n?
By
Latex:
(Thin (-1)
THEN RenameVar `\%\%' (-1)
THEN MoveToConcl (-1)
THEN (GenConclTerm \mkleeneopen{}M i s\mkleeneclose{}\mcdot{} THENA Auto)
THEN D -2
THEN Reduce 0
THEN Auto)
Home
Index