Nuprl Lemma : strong-continuity3-implies-4

[T:Type]. ∀F:(ℕ ⟶ T) ⟶ ℕ(strong-continuity3(T;F)  strong-continuity4(T;F))


Proof




Definitions occuring in Statement :  strong-continuity4: strong-continuity4(T;F) strong-continuity3: strong-continuity3(T;F) nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q strong-continuity3: strong-continuity3(T;F) exists: x:A. B[x] strong-continuity4: strong-continuity4(T;F) member: t ∈ T prop: nat: so_lambda: λ2x.t[x] and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False subtype_rel: A ⊆B less_than': less_than'(a;b) sq_stable: SqStable(P) guard: {T} isl: isl(x) outl: outl(x) so_apply: x[s] pi1: fst(t) bfalse: ff top: Top btrue: tt ifthenelse: if then else fi  assert: b uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q true: True sq_type: SQType(T) cand: c∧ B
Lemmas referenced :  strong-continuity3_wf istype-nat istype-universe decidable__exists_int_seg assert_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le subtype_rel_function int_seg_wf int_seg_subtype istype-false sq_stable__le le_weakening2 subtype_rel_self btrue_wf bfalse_wf less_than_wf assert_elim btrue_neq_bfalse decidable__and2 istype-assert decidable__assert decidable__lt unit_wf2 union_subtype_base set_subtype_base lelt_wf int_subtype_base unit_subtype_base nat_wf int_seg_subtype_nat subtype_rel_union it_wf le_wf true_wf istype-void imax_wf add_nat_wf imax_nat add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma false_wf pi1_wf decidable_wf iff_weakening_equal equal_wf subtype_base_sq squash_wf bool_subtype_base bool_wf isl_wf int_formula_prop_less_lemma intformless_wf imax_ub
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis functionIsType because_Cache instantiate universeEquality dependent_functionElimination natural_numberEquality setElimination rename sqequalRule lambdaEquality_alt productEquality applyEquality dependent_set_memberEquality_alt imageElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination imageMemberEquality baseClosed inhabitedIsType equalityIstype equalityTransitivity equalitySymmetry productIsType applyLambdaEquality isect_memberEquality_alt unionIsType intEquality inlEquality_alt sqequalBase equalityIsType1 inrEquality_alt functionExtensionality addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion dependent_pairEquality_alt functionEquality unionEquality cumulativity inlFormation_alt inrFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  (strong-continuity3(T;F)  {}\mRightarrow{}  strong-continuity4(T;F))



Date html generated: 2020_05_19-PM-10_04_36
Last ObjectModification: 2020_01_04-PM-08_04_04

Theory : continuity


Home Index