Step
*
1
of Lemma
uniform-continuity-pi-search-prop2
1. n : ℕ
2. P : ℕ ⟶ ℙ
3. G : ∀m:ℕn. Dec(P[m])
4. x : ℕ
5. ∃n:{x..n + 1-}. P[n]
6. x ≤ n
⊢ uniform-continuity-pi-search(
G;
n;x) ∈ {k:{x..n + 1-}| P[k] ∧ (∀m:{x..k-}. (¬P[m])) ∧ (∀m:{x..n + 1-}. (P[m]
⇒ (k ≤ m)))}
BY
{ ((Assert ⌜∃m:ℕ. (n = (x + m) ∈ ℤ)⌝⋅ THENA (InstConcl [⌜n - x⌝]⋅ THEN Auto)) THEN D (-1)) }
1
1. n : ℕ
2. P : ℕ ⟶ ℙ
3. G : ∀m:ℕn. Dec(P[m])
4. x : ℕ
5. ∃n:{x..n + 1-}. P[n]
6. x ≤ n
7. m : ℕ
8. n = (x + m) ∈ ℤ
⊢ uniform-continuity-pi-search(
G;
n;x) ∈ {k:{x..n + 1-}| P[k] ∧ (∀m:{x..k-}. (¬P[m])) ∧ (∀m:{x..n + 1-}. (P[m]
⇒ (k ≤ m)))}
Latex:
Latex:
1. n : \mBbbN{}
2. P : \mBbbN{} {}\mrightarrow{} \mBbbP{}
3. G : \mforall{}m:\mBbbN{}n. Dec(P[m])
4. x : \mBbbN{}
5. \mexists{}n:\{x..n + 1\msupminus{}\}. P[n]
6. x \mleq{} n
\mvdash{} uniform-continuity-pi-search(
G;
n;x) \mmember{} \{k:\{x..n + 1\msupminus{}\}| P[k] \mwedge{} (\mforall{}m:\{x..k\msupminus{}\}. (\mneg{}P[m])) \mwedge{} (\mforall{}m:\{x..n + 1\msupminus{}\}. (P[m] {}\mRightarrow{} (k \mleq{} m)))\}
By
Latex:
((Assert \mkleeneopen{}\mexists{}m:\mBbbN{}. (n = (x + m))\mkleeneclose{}\mcdot{} THENA (InstConcl [\mkleeneopen{}n - x\mkleeneclose{}]\mcdot{} THEN Auto)) THEN D (-1))
Home
Index