Nuprl Lemma : uniform-continuity-pi-search-prop2
∀[n:ℕ]. ∀[P:ℕ ⟶ ℙ]. ∀[G:∀m:ℕn. Dec(P[m])]. ∀[x:ℕ].
  (uniform-continuity-pi-search(
   G;
   n;x) ∈ {k:{x..n + 1-}| P[k] ∧ (∀m:{x..k-}. (¬P[m])) ∧ (∀m:{x..n + 1-}. (P[m] 
⇒ (k ≤ m)))} ) supposing 
     ((x ≤ n) and 
     (∃n:{x..n + 1-}. P[n]))
Proof
Definitions occuring in Statement : 
uniform-continuity-pi-search: uniform-continuity-pi-search, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
sq_type: SQType(T)
, 
uniform-continuity-pi-search: uniform-continuity-pi-search, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
cand: A c∧ B
, 
isl: isl(x)
, 
subtract: n - m
, 
squash: ↓T
Lemmas referenced : 
le_wf, 
exists_wf, 
int_seg_wf, 
nat_wf, 
int_seg_subtype_nat, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
all_wf, 
decidable_wf, 
false_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
equal_wf, 
subtype_base_sq, 
int_subtype_base, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
less_than_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
add-zero, 
decidable__lt, 
lelt_wf, 
not_wf, 
add-commutes, 
add-associates, 
add-swap, 
zero-add, 
int_seg_subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
addEquality, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
applyLambdaEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
lambdaFormation, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
instantiate, 
independent_functionElimination, 
intWeakElimination, 
equalityElimination, 
promote_hyp, 
productEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
hyp_replacement
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[G:\mforall{}m:\mBbbN{}n.  Dec(P[m])].  \mforall{}[x:\mBbbN{}].
    (uniform-continuity-pi-search(
      G;
      n;x)  \mmember{}  \{k:\{x..n  +  1\msupminus{}\}|  P[k]  \mwedge{}  (\mforall{}m:\{x..k\msupminus{}\}.  (\mneg{}P[m]))  \mwedge{}  (\mforall{}m:\{x..n  +  1\msupminus{}\}.  (P[m]  {}\mRightarrow{}  (k  \mleq{}  m)))\}  )  supp\000Cosing 
          ((x  \mleq{}  n)  and 
          (\mexists{}n:\{x..n  +  1\msupminus{}\}.  P[n]))
Date html generated:
2017_04_17-AM-09_59_01
Last ObjectModification:
2017_02_27-PM-05_53_01
Theory : continuity
Home
Index