Step
*
of Lemma
weak-continuity-principle-nat+-int-bool
∀F:(ℕ+ ⟶ ℤ) ⟶ 𝔹. ∀f:ℕ+ ⟶ ℤ. ∀G:n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤ| f = g ∈ (ℕ+n ⟶ ℤ)} . ∃n:ℕ+. F f = F (G n)
BY
{ ((Auto
THEN (InstLemma `weak-continuity-nat-int`
[⌜λf.if F (λn.(f (n - 1))) then 1 else 0 fi ⌝;λn.(f (n + 1))]⋅
THENA Auto
)
)
THEN Reduce -1
THEN Assert ⌜↓∃n:ℕ. F f = F (G (n + 1))⌝⋅) }
1
.....assertion.....
1. F : (ℕ+ ⟶ ℤ) ⟶ 𝔹
2. f : ℕ+ ⟶ ℤ
3. G : n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤ| f = g ∈ (ℕ+n ⟶ ℤ)}
4. ⇃(∃n:ℕ
∀g:ℕ ⟶ ℤ
(((λn.(f (n + 1))) = g ∈ (ℕn ⟶ ℤ))
⇒ (if F (λn.(f ((n - 1) + 1))) then 1 else 0 fi = if F (λn.(g (n - 1))) then 1 else 0 fi ∈ ℕ)))
⊢ ↓∃n:ℕ. F f = F (G (n + 1))
2
1. F : (ℕ+ ⟶ ℤ) ⟶ 𝔹
2. f : ℕ+ ⟶ ℤ
3. G : n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤ| f = g ∈ (ℕ+n ⟶ ℤ)}
4. ⇃(∃n:ℕ
∀g:ℕ ⟶ ℤ
(((λn.(f (n + 1))) = g ∈ (ℕn ⟶ ℤ))
⇒ (if F (λn.(f ((n - 1) + 1))) then 1 else 0 fi = if F (λn.(g (n - 1))) then 1 else 0 fi ∈ ℕ)))
5. ↓∃n:ℕ. F f = F (G (n + 1))
⊢ ∃n:ℕ+. F f = F (G n)
Latex:
Latex:
\mforall{}F:(\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}) {}\mrightarrow{} \mBbbB{}. \mforall{}f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}. \mforall{}G:n:\mBbbN{}\msupplus{} {}\mrightarrow{} \{g:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}| f = g\} . \mexists{}n:\mBbbN{}\msupplus{}. F f = F (G n)
By
Latex:
((Auto
THEN (InstLemma `weak-continuity-nat-int`
[\mkleeneopen{}\mlambda{}f.if F (\mlambda{}n.(f (n - 1))) then 1 else 0 fi \mkleeneclose{};\mlambda{}n.(f (n + 1))]\mcdot{}
THENA Auto
)
)
THEN Reduce -1
THEN Assert \mkleeneopen{}\mdownarrow{}\mexists{}n:\mBbbN{}. F f = F (G (n + 1))\mkleeneclose{}\mcdot{})
Home
Index