Nuprl Lemma : weak-continuity-principle-nat+-int-bool

F:(ℕ+ ⟶ ℤ) ⟶ 𝔹. ∀f:ℕ+ ⟶ ℤ. ∀G:n:ℕ+ ⟶ {g:ℕ+ ⟶ ℤg ∈ (ℕ+n ⟶ ℤ)} .  ∃n:ℕ+(G n)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: uall: [x:A]. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) le: A ≤ B less_than': less_than'(a;b) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b iff: ⇐⇒ Q rev_implies:  Q subtract: m subtype_rel: A ⊆B true: True so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  squash: T rev_uimplies: rev_uimplies(P;Q) less_than: a < b
Lemmas referenced :  weak-continuity-nat-int nat_wf subtract_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf bool_wf eqtt_to_assert false_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot decidable__lt not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf nat_plus_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat_plus subtype_rel_self squash-from-quotient exists_wf all_wf int_seg_subtype_nat add-swap nat_properties set_wf add-member-int_seg2 add-subtract-cancel lelt_wf subtract-add-cancel decidable__equal_int intformeq_wf int_formula_prop_eq_lemma btrue_wf equal-wf-base bfalse_wf mu_wf eq_bool_wf assert_of_eq_bool assert_wf add_nat_plus itermAdd_wf int_term_value_add_lemma mu-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin lambdaEquality applyEquality functionExtensionality hypothesisEquality functionEquality because_Cache intEquality hypothesis dependent_set_memberEquality isectElimination setElimination rename natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation equalityElimination productElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity addEquality minusEquality setEquality imageElimination imageMemberEquality baseClosed applyLambdaEquality hyp_replacement

Latex:
\mforall{}F:(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}G:n:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \{g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  f  =  g\}  .    \mexists{}n:\mBbbN{}\msupplus{}.  F  f  =  F  (G  n)



Date html generated: 2017_09_29-PM-06_06_11
Last ObjectModification: 2017_07_08-AM-11_58_25

Theory : continuity


Home Index