Step
*
of Lemma
weak-continuity-truncated
∀[T:{T:Type| (T ⊆r ℕ) ∧ (↓T)} ]
∀F:(ℕ ⟶ T) ⟶ ℕ. ⇃(∀f:ℕ ⟶ T. ∃n:ℕ. ∀g:ℕ ⟶ T. ((f = g ∈ (ℕn ⟶ T))
⇒ ((F f) = (F g) ∈ ℕ)))
BY
{ (Auto
THEN (InstLemma `weak-continuity-skolem-truncated` [⌜T⌝;⌜F⌝]⋅ THENA Auto)
THEN ParallelLast
THEN Auto
THEN D -2
THEN Auto) }
1
1. [T] : {T:Type| (T ⊆r ℕ) ∧ (↓T)}
2. F : (ℕ ⟶ T) ⟶ ℕ
3. M : (ℕ ⟶ T) ⟶ ℕ
4. ∀f,g:ℕ ⟶ T. ((f = g ∈ (ℕM f ⟶ T))
⇒ ((F f) = (F g) ∈ ℕ))
5. f : ℕ ⟶ T
⊢ ∃n:ℕ. ∀g:ℕ ⟶ T. ((f = g ∈ (ℕn ⟶ T))
⇒ ((F f) = (F g) ∈ ℕ))
Latex:
Latex:
\mforall{}[T:\{T:Type| (T \msubseteq{}r \mBbbN{}) \mwedge{} (\mdownarrow{}T)\} ]
\mforall{}F:(\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} \mBbbN{}. \00D9(\mforall{}f:\mBbbN{} {}\mrightarrow{} T. \mexists{}n:\mBbbN{}. \mforall{}g:\mBbbN{} {}\mrightarrow{} T. ((f = g) {}\mRightarrow{} ((F f) = (F g))))
By
Latex:
(Auto
THEN (InstLemma `weak-continuity-skolem-truncated` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}F\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ParallelLast
THEN Auto
THEN D -2
THEN Auto)
Home
Index