Nuprl Lemma : weak-continuity-truncated

[T:{T:Type| (T ⊆r ℕ) ∧ (↓T)} ]
  ∀F:(ℕ ⟶ T) ⟶ ℕ. ⇃(∀f:ℕ ⟶ T. ∃n:ℕ. ∀g:ℕ ⟶ T. ((f g ∈ (ℕn ⟶ T))  ((F f) (F g) ∈ ℕ)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q true: True set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] implies:  Q nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A weak-continuity-skolem: weak-continuity-skolem(T;F) exists: x:A. B[x] guard: {T} decidable: Dec(P) or: P ∨ Q ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  weak-continuity-skolem-truncated nat_wf set_wf subtype_rel_wf squash_wf weak-continuity-skolem_wf all_wf exists_wf equal_wf int_seg_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self implies-quotient-true decidable__le nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination functionEquality hypothesis setElimination rename instantiate universeEquality sqequalRule lambdaEquality productEquality cumulativity functionExtensionality applyEquality because_Cache natural_numberEquality independent_isectElimination independent_pairFormation productElimination independent_functionElimination dependent_pairFormation unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberEquality

Latex:
\mforall{}[T:\{T:Type|  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)\}  ]
    \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mexists{}n:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  T.  ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))



Date html generated: 2017_04_17-AM-09_54_06
Last ObjectModification: 2017_02_27-PM-05_48_50

Theory : continuity


Home Index