Nuprl Lemma : weak-continuity-truncated
∀[T:{T:Type| (T ⊆r ℕ) ∧ (↓T)} ]
  ∀F:(ℕ ⟶ T) ⟶ ℕ. ⇃(∀f:ℕ ⟶ T. ∃n:ℕ. ∀g:ℕ ⟶ T. ((f = g ∈ (ℕn ⟶ T)) 
⇒ ((F f) = (F g) ∈ ℕ)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
true: True
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
weak-continuity-skolem: weak-continuity-skolem(T;F)
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
weak-continuity-skolem-truncated, 
nat_wf, 
set_wf, 
subtype_rel_wf, 
squash_wf, 
weak-continuity-skolem_wf, 
all_wf, 
exists_wf, 
equal_wf, 
int_seg_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
implies-quotient-true, 
decidable__le, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
functionEquality, 
hypothesis, 
setElimination, 
rename, 
instantiate, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
cumulativity, 
functionExtensionality, 
applyEquality, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality
Latex:
\mforall{}[T:\{T:Type|  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)\}  ]
    \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mexists{}n:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  T.  ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
Date html generated:
2017_04_17-AM-09_54_06
Last ObjectModification:
2017_02_27-PM-05_48_50
Theory : continuity
Home
Index