Nuprl Lemma : all_functionality_wrt_uiff

[S,T:Type]. ∀[P:S ⟶ ℙ]. ∀[Q:T ⟶ ℙ].
  (∀x:T. {uiff(P[x];Q[x])})  {uiff(∀x:S. P[x];∀x:T. Q[x])} supposing T ∈ Type


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] so_apply: x[s] subtype_rel: A ⊆B prop: pi1: fst(t) pi2: snd(t)
Lemmas referenced :  trivial-equal istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  cut introduction axiomEquality hypothesis thin rename Error :lambdaFormation_alt,  independent_pairFormation Error :functionIsType,  because_Cache Error :universeIsType,  applyEquality hypothesisEquality sqequalHypSubstitution Error :productIsType,  Error :isectIsType,  extract_by_obid isectElimination hyp_replacement equalitySymmetry Error :equalityIstype,  universeEquality Error :inhabitedIsType,  instantiate Error :lambdaEquality_alt,  dependent_functionElimination functionExtensionality productElimination equalityTransitivity independent_functionElimination

Latex:
\mforall{}[S,T:Type].  \mforall{}[P:S  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x:T.  \{uiff(P[x];Q[x])\})  {}\mRightarrow{}  \{uiff(\mforall{}x:S.  P[x];\mforall{}x:T.  Q[x])\}  supposing  S  =  T



Date html generated: 2019_06_20-AM-11_14_48
Last ObjectModification: 2018_11_28-AM-08_53_14

Theory : core_2


Home Index