Nuprl Lemma : all_functionality_wrt_uiff
∀[S,T:Type]. ∀[P:S ⟶ ℙ]. ∀[Q:T ⟶ ℙ].
  (∀x:T. {uiff(P[x];Q[x])}) 
⇒ {uiff(∀x:S. P[x];∀x:T. Q[x])} supposing S = T ∈ Type
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
trivial-equal, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :functionIsType, 
because_Cache, 
Error :universeIsType, 
applyEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
Error :productIsType, 
Error :isectIsType, 
extract_by_obid, 
isectElimination, 
hyp_replacement, 
equalitySymmetry, 
Error :equalityIstype, 
universeEquality, 
Error :inhabitedIsType, 
instantiate, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
functionExtensionality, 
productElimination, 
equalityTransitivity, 
independent_functionElimination
Latex:
\mforall{}[S,T:Type].  \mforall{}[P:S  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x:T.  \{uiff(P[x];Q[x])\})  {}\mRightarrow{}  \{uiff(\mforall{}x:S.  P[x];\mforall{}x:T.  Q[x])\}  supposing  S  =  T
Date html generated:
2019_06_20-AM-11_14_48
Last ObjectModification:
2018_11_28-AM-08_53_14
Theory : core_2
Home
Index