Nuprl Lemma : and_assoc

[A,B,C:ℙ].  (A ∧ B ∧ ⇐⇒ (A ∧ B) ∧ C)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  independent_pairFormation lambdaFormation sqequalHypSubstitution productElimination thin hypothesis productEquality cumulativity hypothesisEquality Error :inhabitedIsType,  Error :universeIsType,  universeEquality

Latex:
\mforall{}[A,B,C:\mBbbP{}].    (A  \mwedge{}  B  \mwedge{}  C  \mLeftarrow{}{}\mRightarrow{}  (A  \mwedge{}  B)  \mwedge{}  C)



Date html generated: 2019_06_20-AM-11_15_54
Last ObjectModification: 2018_09_26-AM-10_23_55

Theory : core_2


Home Index