Nuprl Lemma : and_assoc
∀[A,B,C:ℙ].  (A ∧ B ∧ C 
⇐⇒ (A ∧ B) ∧ C)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
productEquality, 
cumulativity, 
hypothesisEquality, 
Error :inhabitedIsType, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[A,B,C:\mBbbP{}].    (A  \mwedge{}  B  \mwedge{}  C  \mLeftarrow{}{}\mRightarrow{}  (A  \mwedge{}  B)  \mwedge{}  C)
Date html generated:
2019_06_20-AM-11_15_54
Last ObjectModification:
2018_09_26-AM-10_23_55
Theory : core_2
Home
Index