Nuprl Lemma : and_false_l

[A:Top]. (False ∧ ⇐⇒ False)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top iff: ⇐⇒ Q and: P ∧ Q false: False
Definitions unfolded in proof :  and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] iff: ⇐⇒ Q implies:  Q false: False member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  top_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation lambdaFormation cut hypothesis productEquality lemma_by_obid sqequalHypSubstitution voidElimination productElimination thin

Latex:
\mforall{}[A:Top].  (False  \mwedge{}  A  \mLeftarrow{}{}\mRightarrow{}  False)



Date html generated: 2016_05_13-PM-03_11_13
Last ObjectModification: 2016_01_06-PM-05_25_39

Theory : core_2


Home Index