Nuprl Lemma : and_false_l
∀[A:Top]. (False ∧ A 
⇐⇒ False)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
false: False
Definitions unfolded in proof : 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
top_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
cut, 
hypothesis, 
productEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
voidElimination, 
productElimination, 
thin
Latex:
\mforall{}[A:Top].  (False  \mwedge{}  A  \mLeftarrow{}{}\mRightarrow{}  False)
Date html generated:
2016_05_13-PM-03_11_13
Last ObjectModification:
2016_01_06-PM-05_25_39
Theory : core_2
Home
Index