Nuprl Lemma : and_functionality_wrt_implies
∀[P1,P2,Q1,Q2:ℙ].  ({P1 
⇒ P2} 
⇒ {Q1 
⇒ Q2} 
⇒ {(P1 ∧ Q1) 
⇒ (P2 ∧ Q2)})
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
productEquality, 
cumulativity, 
hypothesisEquality, 
functionEquality, 
Error :inhabitedIsType, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[P1,P2,Q1,Q2:\mBbbP{}].    (\{P1  {}\mRightarrow{}  P2\}  {}\mRightarrow{}  \{Q1  {}\mRightarrow{}  Q2\}  {}\mRightarrow{}  \{(P1  \mwedge{}  Q1)  {}\mRightarrow{}  (P2  \mwedge{}  Q2)\})
Date html generated:
2019_06_20-AM-11_16_49
Last ObjectModification:
2018_09_26-AM-10_24_26
Theory : core_2
Home
Index