Nuprl Lemma : and_functionality_wrt_uimplies

[P1,P2,Q1,Q2:ℙ].  ({P2 supposing P1}  {Q2 supposing Q1}  {P2 ∧ Q2 supposing P1 ∧ Q1})


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} implies:  Q and: P ∧ Q
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] implies:  Q uimplies: supposing a and: P ∧ Q cand: c∧ B prop: member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  isect_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation cut hypothesis sqequalHypSubstitution independent_isectElimination thin productElimination independent_pairFormation Error :productIsType,  Error :universeIsType,  hypothesisEquality introduction extract_by_obid isectElimination cumulativity lambdaEquality Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[P1,P2,Q1,Q2:\mBbbP{}].    (\{P2  supposing  P1\}  {}\mRightarrow{}  \{Q2  supposing  Q1\}  {}\mRightarrow{}  \{P2  \mwedge{}  Q2  supposing  P1  \mwedge{}  Q1\})



Date html generated: 2019_06_20-AM-11_14_12
Last ObjectModification: 2018_09_26-AM-10_41_48

Theory : core_2


Home Index