Nuprl Lemma : and_functionality_wrt_uimplies
∀[P1,P2,Q1,Q2:ℙ].  ({P2 supposing P1} 
⇒ {Q2 supposing Q1} 
⇒ {P2 ∧ Q2 supposing P1 ∧ Q1})
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
independent_isectElimination, 
thin, 
productElimination, 
independent_pairFormation, 
Error :productIsType, 
Error :universeIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
lambdaEquality, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[P1,P2,Q1,Q2:\mBbbP{}].    (\{P2  supposing  P1\}  {}\mRightarrow{}  \{Q2  supposing  Q1\}  {}\mRightarrow{}  \{P2  \mwedge{}  Q2  supposing  P1  \mwedge{}  Q1\})
Date html generated:
2019_06_20-AM-11_14_12
Last ObjectModification:
2018_09_26-AM-10_41_48
Theory : core_2
Home
Index