Nuprl Lemma : comb_for_iff_wf
λA,B,z. (A 
⇐⇒ B) ∈ A:ℙ ⟶ B:ℙ ⟶ (↓True) ⟶ ℙ
Proof
Definitions occuring in Statement : 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
true_wf, 
squash_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality
Latex:
\mlambda{}A,B,z.  (A  \mLeftarrow{}{}\mRightarrow{}  B)  \mmember{}  A:\mBbbP{}  {}\mrightarrow{}  B:\mBbbP{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}
Date html generated:
2016_05_13-PM-03_08_11
Last ObjectModification:
2016_01_06-PM-05_27_44
Theory : core_2
Home
Index