Nuprl Lemma : comb_for_not_wf

λA,z. A) ∈ A:ℙ ⟶ (↓True) ⟶ ℙ


Proof




Definitions occuring in Statement :  prop: not: ¬A squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  true_wf squash_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution imageElimination cut lemma_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality

Latex:
\mlambda{}A,z.  (\mneg{}A)  \mmember{}  A:\mBbbP{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}



Date html generated: 2016_05_13-PM-03_08_03
Last ObjectModification: 2016_01_06-PM-05_28_19

Theory : core_2


Home Index