Nuprl Lemma : equality-test
∀[A,B,C:Type].  ((A = B ∈ Type) 
⇒ (C = B ∈ Type) 
⇒ (∀[x,y,z:A].  ((x = y ∈ A) 
⇒ (z = y ∈ A) 
⇒ (x = z ∈ C))))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
hyp_replacement
Latex:
\mforall{}[A,B,C:Type].    ((A  =  B)  {}\mRightarrow{}  (C  =  B)  {}\mRightarrow{}  (\mforall{}[x,y,z:A].    ((x  =  y)  {}\mRightarrow{}  (z  =  y)  {}\mRightarrow{}  (x  =  z))))
Date html generated:
2019_06_20-AM-11_18_38
Last ObjectModification:
2018_09_27-PM-05_34_18
Theory : core_2
Home
Index