Nuprl Lemma : equality-test

[A,B,C:Type].  ((A B ∈ Type)  (C B ∈ Type)  (∀[x,y,z:A].  ((x y ∈ A)  (z y ∈ A)  (x z ∈ C))))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: subtype_rel: A ⊆B
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  instantiate universeEquality equalityTransitivity equalitySymmetry applyEquality sqequalRule Error :lambdaEquality_alt,  hyp_replacement

Latex:
\mforall{}[A,B,C:Type].    ((A  =  B)  {}\mRightarrow{}  (C  =  B)  {}\mRightarrow{}  (\mforall{}[x,y,z:A].    ((x  =  y)  {}\mRightarrow{}  (z  =  y)  {}\mRightarrow{}  (x  =  z))))



Date html generated: 2019_06_20-AM-11_18_38
Last ObjectModification: 2018_09_27-PM-05_34_18

Theory : core_2


Home Index