Nuprl Lemma : icomb_wf
∀[A:Type]. (I ∈ A ⟶ A)
Proof
Definitions occuring in Statement : 
icomb: I
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
icomb: I
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[A:Type].  (I  \mmember{}  A  {}\mrightarrow{}  A)
Date html generated:
2019_06_20-AM-11_14_37
Last ObjectModification:
2018_09_26-AM-10_42_00
Theory : core_2
Home
Index