Nuprl Lemma : implies_transitivity
∀[P,Q,R:ℙ].  ((P 
⇒ Q) 
⇒ (Q 
⇒ R) 
⇒ {P 
⇒ R})
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
functionEquality, 
Error :inhabitedIsType, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[P,Q,R:\mBbbP{}].    ((P  {}\mRightarrow{}  Q)  {}\mRightarrow{}  (Q  {}\mRightarrow{}  R)  {}\mRightarrow{}  \{P  {}\mRightarrow{}  R\})
Date html generated:
2019_06_20-AM-11_16_44
Last ObjectModification:
2018_09_26-AM-10_24_22
Theory : core_2
Home
Index