Nuprl Lemma : minimal-example1
∀[A,B,X:ℙ].  ((((A ⇒ B) ⇒ X) ⇒ X) ⇒ ((A ⇒ X) ⇒ X) ⇒ (B ⇒ X) ⇒ X)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q
Definitions unfolded in proof : 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x]
Rules used in proof : 
universeEquality, 
hypothesisEquality, 
functionEquality, 
thin, 
independent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A,B,X:\mBbbP{}].    ((((A  {}\mRightarrow{}  B)  {}\mRightarrow{}  X)  {}\mRightarrow{}  X)  {}\mRightarrow{}  ((A  {}\mRightarrow{}  X)  {}\mRightarrow{}  X)  {}\mRightarrow{}  (B  {}\mRightarrow{}  X)  {}\mRightarrow{}  X)
Date html generated:
2017_09_29-PM-05_46_40
Last ObjectModification:
2017_09_23-PM-06_50_08
Theory : core_2
Home
Index