Nuprl Lemma : minimal-not-not-xmiddle
∀[P,A:ℙ].  (((P ∨ (P 
⇒ A)) 
⇒ A) 
⇒ A)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
guard: {T}
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
or_wf
Rules used in proof : 
sqequalRule, 
inrFormation, 
inlFormation, 
because_Cache, 
independent_functionElimination, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
functionEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeEquality
Latex:
\mforall{}[P,A:\mBbbP{}].    (((P  \mvee{}  (P  {}\mRightarrow{}  A))  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)
Date html generated:
2017_09_29-PM-05_46_50
Last ObjectModification:
2017_09_19-PM-04_52_34
Theory : core_2
Home
Index