Nuprl Lemma : minimal-triple-neg-ext
∀[E:Type]. ∀[A:ℙ].  (((A 
⇒ E) 
⇒ E) 
⇒ E 
⇐⇒ A 
⇒ E)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
minimal-triple-neg
Lemmas referenced : 
minimal-triple-neg
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[E:Type].  \mforall{}[A:\mBbbP{}].    (((A  {}\mRightarrow{}  E)  {}\mRightarrow{}  E)  {}\mRightarrow{}  E  \mLeftarrow{}{}\mRightarrow{}  A  {}\mRightarrow{}  E)
Date html generated:
2018_05_21-PM-00_00_29
Last ObjectModification:
2018_05_19-AM-07_14_11
Theory : core_2
Home
Index