Nuprl Lemma : minimal-triple-neg

[E:Type]. ∀[A:ℙ].  (((A  E)  E)  ⇐⇒  E)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation cut hypothesis sqequalHypSubstitution independent_functionElimination thin functionEquality cumulativity hypothesisEquality universeEquality

Latex:
\mforall{}[E:Type].  \mforall{}[A:\mBbbP{}].    (((A  {}\mRightarrow{}  E)  {}\mRightarrow{}  E)  {}\mRightarrow{}  E  \mLeftarrow{}{}\mRightarrow{}  A  {}\mRightarrow{}  E)



Date html generated: 2018_05_21-PM-00_00_21
Last ObjectModification: 2018_02_09-AM-10_46_07

Theory : core_2


Home Index