Nuprl Lemma : minimal-triple-neg
∀[E:Type]. ∀[A:ℙ].  (((A 
⇒ E) 
⇒ E) 
⇒ E 
⇐⇒ A 
⇒ E)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality
Latex:
\mforall{}[E:Type].  \mforall{}[A:\mBbbP{}].    (((A  {}\mRightarrow{}  E)  {}\mRightarrow{}  E)  {}\mRightarrow{}  E  \mLeftarrow{}{}\mRightarrow{}  A  {}\mRightarrow{}  E)
Date html generated:
2018_05_21-PM-00_00_21
Last ObjectModification:
2018_02_09-AM-10_46_07
Theory : core_2
Home
Index