Nuprl Lemma : not-not-p-or-not-p-prgram

P,A:ℙ.  (((P ∨ (P  A))  A)  A)


Proof




Definitions occuring in Statement :  prop: all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  member: t ∈ T not-not-p-or-not-p
Lemmas referenced :  not-not-p-or-not-p
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}P,A:\mBbbP{}.    (((P  \mvee{}  (P  {}\mRightarrow{}  A))  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)



Date html generated: 2017_09_29-PM-05_46_44
Last ObjectModification: 2017_09_19-PM-04_50_08

Theory : core_2


Home Index