Nuprl Lemma : not-not-p-or-not-p-prgram
∀P,A:ℙ.  (((P ∨ (P ⇒ A)) ⇒ A) ⇒ A)
Proof
Definitions occuring in Statement : 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q
Definitions unfolded in proof : 
member: t ∈ T, 
not-not-p-or-not-p
Lemmas referenced : 
not-not-p-or-not-p
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}P,A:\mBbbP{}.    (((P  \mvee{}  (P  {}\mRightarrow{}  A))  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)
Date html generated:
2017_09_29-PM-05_46_44
Last ObjectModification:
2017_09_19-PM-04_50_08
Theory : core_2
Home
Index