Nuprl Lemma : not-not-p-or-not-p

P,A:ℙ.  (((P ∨ (P  A))  A)  A)


Proof




Definitions occuring in Statement :  prop: all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  or: P ∨ Q guard: {T} uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  or_wf
Rules used in proof :  because_Cache inlFormation inrFormation sqequalRule independent_functionElimination universeEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction functionEquality levelHypothesis addLevel hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}P,A:\mBbbP{}.    (((P  \mvee{}  (P  {}\mRightarrow{}  A))  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)



Date html generated: 2016_10_21-AM-09_35_18
Last ObjectModification: 2016_09_23-PM-04_22_40

Theory : core_2


Home Index