Nuprl Lemma : not-not-p-or-not-p
∀P,A:ℙ.  (((P ∨ (P ⇒ A)) ⇒ A) ⇒ A)
Proof
Definitions occuring in Statement : 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q
Definitions unfolded in proof : 
or: P ∨ Q, 
guard: {T}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
or_wf
Rules used in proof : 
because_Cache, 
inlFormation, 
inrFormation, 
sqequalRule, 
independent_functionElimination, 
universeEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
functionEquality, 
levelHypothesis, 
addLevel, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}P,A:\mBbbP{}.    (((P  \mvee{}  (P  {}\mRightarrow{}  A))  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)
Date html generated:
2016_10_21-AM-09_35_18
Last ObjectModification:
2016_09_23-PM-04_22_40
Theory : core_2
Home
Index