Nuprl Lemma : or_false_l
∀[A:ℙ]. (False ∨ A
⇐⇒ A)
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
or: P ∨ Q
,
false: False
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
or: P ∨ Q
,
false: False
,
member: t ∈ T
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
guard: {T}
Lemmas referenced :
or_wf,
false_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
independent_pairFormation,
lambdaFormation,
sqequalHypSubstitution,
unionElimination,
thin,
voidElimination,
hypothesis,
cut,
introduction,
extract_by_obid,
isectElimination,
hypothesisEquality,
sqequalRule,
inrFormation,
Error :universeIsType,
universeEquality
Latex:
\mforall{}[A:\mBbbP{}]. (False \mvee{} A \mLeftarrow{}{}\mRightarrow{} A)
Date html generated:
2019_06_20-AM-11_16_19
Last ObjectModification:
2018_09_26-AM-10_24_09
Theory : core_2
Home
Index