Nuprl Lemma : or_true_l
∀[A:ℙ]. (True ∨ A ⇐⇒ True)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
true: True
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
true: True, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
or: P ∨ Q
Lemmas referenced : 
or_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
inlFormation, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[A:\mBbbP{}].  (True  \mvee{}  A  \mLeftarrow{}{}\mRightarrow{}  True)
Date html generated:
2019_06_20-AM-11_16_24
Last ObjectModification:
2018_09_26-AM-10_24_12
Theory : core_2
Home
Index