Nuprl Lemma : respects-equality_weakening

[T,S:Type].  ((S T ∈ Type)  respects-equality(S;T))


Proof




Definitions occuring in Statement :  respects-equality: respects-equality(S;T) uall: [x:A]. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q respects-equality: respects-equality(S;T) all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  istype-base istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  hypothesis applyEquality equalityTransitivity equalitySymmetry Error :lambdaEquality_alt,  hyp_replacement hypothesisEquality Error :universeIsType,  sqequalHypSubstitution sqequalRule Error :equalityIsType4,  because_Cache Error :inhabitedIsType,  extract_by_obid Error :equalityIsType1,  dependent_functionElimination thin axiomEquality Error :functionIsTypeImplies,  Error :isect_memberEquality_alt,  isectElimination Error :isectIsTypeImplies,  instantiate universeEquality

Latex:
\mforall{}[T,S:Type].    ((S  =  T)  {}\mRightarrow{}  respects-equality(S;T))



Date html generated: 2019_06_20-AM-11_13_56
Last ObjectModification: 2018_11_21-AM-10_58_19

Theory : core_2


Home Index