Nuprl Lemma : respects-equality_weakening
∀[T,S:Type].  ((S = T ∈ Type) 
⇒ respects-equality(S;T))
Proof
Definitions occuring in Statement : 
respects-equality: respects-equality(S;T)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
respects-equality: respects-equality(S;T)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
istype-base, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
hypothesis, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :lambdaEquality_alt, 
hyp_replacement, 
hypothesisEquality, 
Error :universeIsType, 
sqequalHypSubstitution, 
sqequalRule, 
Error :equalityIsType4, 
because_Cache, 
Error :inhabitedIsType, 
extract_by_obid, 
Error :equalityIsType1, 
dependent_functionElimination, 
thin, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :isect_memberEquality_alt, 
isectElimination, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[T,S:Type].    ((S  =  T)  {}\mRightarrow{}  respects-equality(S;T))
Date html generated:
2019_06_20-AM-11_13_56
Last ObjectModification:
2018_11_21-AM-10_58_19
Theory : core_2
Home
Index