Nuprl Lemma : set-elim
∀[A:Type]. ∀[B:A ⟶ Type].  ∀x:Image((a:A × B[a]),(λp.(fst(p)))). ((x ∈ A) ∧ (↓B[x]))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
image-type: Image(T,f)
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
squash: ↓T
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
Lemmas referenced : 
image-type_wf
Rules used in proof : 
universeEquality, 
Error :isect_memberEquality_alt, 
Error :functionIsType, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_pairEquality, 
productElimination, 
dependent_functionElimination, 
Error :lambdaEquality_alt, 
baseClosed, 
applyEquality, 
hypothesisEquality, 
productEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
Error :universeIsType, 
hypothesis, 
independent_pairFormation, 
sqequalRule, 
imageElimination, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
rename
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mforall{}x:Image((a:A  \mtimes{}  B[a]),(\mlambda{}p.(fst(p)))).  ((x  \mmember{}  A)  \mwedge{}  (\mdownarrow{}B[x]))
Date html generated:
2019_06_20-AM-11_13_36
Last ObjectModification:
2018_10_16-PM-01_02_28
Theory : core_2
Home
Index