Nuprl Lemma : set-elim

[A:Type]. ∀[B:A ⟶ Type].  ∀x:Image((a:A × B[a]),(λp.(fst(p)))). ((x ∈ A) ∧ (↓B[x]))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) image-type: Image(T,f) all: x:A. B[x] squash: T and: P ∧ Q member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  squash: T so_apply: x[s] cand: c∧ B and: P ∧ Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] pi1: fst(t)
Lemmas referenced :  image-type_wf
Rules used in proof :  universeEquality Error :isect_memberEquality_alt,  Error :functionIsType,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  imageMemberEquality equalitySymmetry equalityTransitivity axiomEquality independent_pairEquality productElimination dependent_functionElimination Error :lambdaEquality_alt,  baseClosed applyEquality hypothesisEquality productEquality thin isectElimination sqequalHypSubstitution extract_by_obid Error :universeIsType,  hypothesis independent_pairFormation sqequalRule imageElimination Error :lambdaFormation_alt,  cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution rename

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mforall{}x:Image((a:A  \mtimes{}  B[a]),(\mlambda{}p.(fst(p)))).  ((x  \mmember{}  A)  \mwedge{}  (\mdownarrow{}B[x]))



Date html generated: 2019_06_20-AM-11_13_36
Last ObjectModification: 2018_10_16-PM-01_02_28

Theory : core_2


Home Index