Nuprl Lemma : sq_or_sq_or
∀[a,b,c:ℙ].  ({uiff(a ↓∨ b ↓∨ c;a ↓∨ (b ∨ c))} ∧ {uiff((b ↓∨ c) ↓∨ a;(b ∨ c) ↓∨ a)})
Proof
Definitions occuring in Statement : 
sq_or: a ↓∨ b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
sq_or: a ↓∨ b
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
or: P ∨ Q
, 
prop: ℙ
Lemmas referenced : 
squash_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
imageElimination, 
unionElimination, 
thin, 
inlFormation, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
imageMemberEquality, 
baseClosed, 
inrFormation, 
because_Cache, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[a,b,c:\mBbbP{}].    (\{uiff(a  \mdownarrow{}\mvee{}  b  \mdownarrow{}\mvee{}  c;a  \mdownarrow{}\mvee{}  (b  \mvee{}  c))\}  \mwedge{}  \{uiff((b  \mdownarrow{}\mvee{}  c)  \mdownarrow{}\mvee{}  a;(b  \mvee{}  c)  \mdownarrow{}\mvee{}  a)\})
Date html generated:
2016_05_13-PM-03_13_24
Last ObjectModification:
2016_01_06-PM-05_48_22
Theory : core_2
Home
Index