Nuprl Lemma : sq_stable__uimplies
∀[P,Q:ℙ].  (SqStable(Q) 
⇒ SqStable(Q supposing P))
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
isect_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
imageElimination, 
introduction, 
independent_isectElimination, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    (SqStable(Q)  {}\mRightarrow{}  SqStable(Q  supposing  P))
Date html generated:
2016_05_13-PM-03_09_45
Last ObjectModification:
2016_01_06-PM-05_49_13
Theory : core_2
Home
Index