Nuprl Lemma : squash_and

[a,b:ℙ].  uiff(↓a ∧ b;(↓a) ∧ (↓b))


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] prop: squash: T and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop: cand: c∧ B
Lemmas referenced :  and_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution imageElimination productElimination thin hypothesis sqequalRule imageMemberEquality hypothesisEquality baseClosed independent_pairEquality lemma_by_obid isectElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[a,b:\mBbbP{}].    uiff(\mdownarrow{}a  \mwedge{}  b;(\mdownarrow{}a)  \mwedge{}  (\mdownarrow{}b))



Date html generated: 2016_05_13-PM-03_13_55
Last ObjectModification: 2016_01_06-PM-05_49_43

Theory : core_2


Home Index