Nuprl Lemma : squash_and
∀[a,b:ℙ].  uiff(↓a ∧ b;(↓a) ∧ (↓b))
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
cand: A c∧ B
Lemmas referenced : 
and_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
independent_pairEquality, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[a,b:\mBbbP{}].    uiff(\mdownarrow{}a  \mwedge{}  b;(\mdownarrow{}a)  \mwedge{}  (\mdownarrow{}b))
Date html generated:
2016_05_13-PM-03_13_55
Last ObjectModification:
2016_01_06-PM-05_49_43
Theory : core_2
Home
Index