Nuprl Lemma : squash_sq_or

[a,b:ℙ].  uiff(↓a ↓∨ b;a ↓∨ b)


Proof




Definitions occuring in Statement :  sq_or: a ↓∨ b uiff: uiff(P;Q) uall: [x:A]. B[x] prop: squash: T
Definitions unfolded in proof :  sq_or: a ↓∨ b uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop:
Lemmas referenced :  or_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution imageElimination hypothesis imageMemberEquality hypothesisEquality thin baseClosed lemma_by_obid isectElimination productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[a,b:\mBbbP{}].    uiff(\mdownarrow{}a  \mdownarrow{}\mvee{}  b;a  \mdownarrow{}\mvee{}  b)



Date html generated: 2016_05_13-PM-03_13_45
Last ObjectModification: 2016_01_06-PM-05_49_38

Theory : core_2


Home Index